
October 1998 The Delphi Magazine 31

Creating A Delphi Build Process
by Dave Collie

team members who ‘break’ the
build can be subject to humiliation.
I don’t recommend this approach
myself, but it may appeal to you...
Working in smaller teams of say
two to three people you can afford
to relax the build to once a week
because there’s normally better
communication within the team.

Builds can also be useful man-
agement tools for highlighting the
state of development. If the prod-
uct regularly fails the build then
the chances are that it’s in a mess
and needs sorting out. It also pro-
vides management with visible
progress: if each build adds new
functionality you know you’re
moving forward. Without a suc-
cessful build to show progress it’s
normally a case of guesswork as to
what state the product is in.

The most important feature of a
build process is that it must be
repeatable. That is, if the build is
done twice in a row you will get the
same results. This is important
because without the process being
repeatable you won’t know
whether the build process or the
product lies at fault when a prob-
lem in the build occurs. This rules
out doing each step of the build
process manually: it must be auto-
mated. If you have a product that
consists of multiple Delphi pro-
jects it’s not good enough to just
load each project one by one into
the IDE and perform manual com-
pilations. This is too open to
errors: it’s easy to imagine a devel-
oper’s IDE compiler settings might
have changed from one build to the
next. Also, what if the executables
produced by the build require cer-
tain compiler flags to be used that
are different to those required for
day-to-day development (for exam-
ple no assertions or debug sym-
bols)? In this case if the build were
done manually the developer
would have to change each

If you work in a team collaborat-
ing on a single product then you

should be performing regular
builds of the system. A build cre-
ates all of the product’s target files
ready for release and is essentially
an automated compile for the
entire application, including all
executables, DLLs and resource
files etc. It’s important when work-
ing in a team to perform builds on a
regular basis so that you can guar-
antee the code has not been
broken somewhere along the line.

In a normal team development
scenario where some form of
source code management system
is in use, for example Microsoft
Visual Source Safe, each developer
normally has their own ‘sandbox’
of code. A sandbox is a set of code
unique to the developer which can
be worked on in isolation to the
rest of the team. This enables the
developer to make changes to the
code without affecting the other
team members. The downside of
this is that the different sandboxes
can get out of sync with each other
and when all the team members’
code has been checked in, changes
made by different developers can
be incompatible, resulting in a
system that no longer compiles.
The purpose of a build is to
attempt to compile the system in
its entirety and to ensure that this
has not happened.

As I previously indicated, builds
should be done on a regular basis,
anywhere from every day to once a
week. In fact the frequency of the
builds should be inversely propor-
tional to the size of the develop-
ment team, because the more team
members there are, the more
chance the code will get out of line.
Ideally, a build should include all
end-user deliverables, not only
code but also help and so on. It’s
well documented that Microsoft,
as a matter of course, perform
daily builds of a lot of their prod-
ucts. Microsoft have taken the
build process to an extreme and

project’s options by hand, which is
obviously error prone.

A Delphi Build Process
Luckily it’s quite easy to create an
automated build process using
Delphi’s command line compiler,
DCC32. This is a console applica-
tion that can compile any Delphi
project: executables, DLLs and, in
Delphi 3 and 4, packages. By creat-
ing a DOS batch file that calls
DCC32 for each project in the prod-
uct, an automated repeatable
build process can quickly be
assembled. If you use a source
code management system which
provides command line tools
(most do) then the batch file can
also get the latest version of your
code before compiling it. This is
much better than getting the code
by hand, since manual processes
are error prone. Although primi-
tive by today’s standards, a batch
file is useful for automating the
build process as it is easy to write
and can normally perform all of the
tasks necessary for automation.

Before creating an example DOS
batch build process, it’s important
to understand DCC32 fairly well. It
has a large number of command
line options, which enables it to
match all of the compilation con-
figurations that can be defined in
the Delphi IDE. Table 1 lists all of
the options and explains each one
briefly (all of the options are
explained in detail in Appendix A
of the Delphi User’s Guide). Each
option can be preceded on the
command line with a / or -.

It would be tedious to have to
define each of these options for
every project where the options
are product wide (ie apply to all
projects). However, you can set up
a list of common options in a con-
figuration file that is processed by

➤ Listing 1

-aWinTypes=Windows;WinProcs=Windows;DbiProcs=BDE;DbiTypes=BDE;DbiErrs=BDE
-u"d:\Program Files\Borland\Delphi 3\Lib"

October 1998 The Delphi Magazine 32

➤ Table 1: DCC32 options.

DCC32 before compiling a project.
This file is called DCC32.CFG and
can reside either in the current
directory or the same directory as
DCC32.EXE. As shipped, Delphi
provides a default configuration
file in its \Bin subdirectory. Listing
1 shows the default settings. As
you can see, it defines the default
unit aliases and library path.

The last thing to be aware of
before creating a batch file to call
DCC32.EXE is that if a project
source references any units using
relative paths, as opposed to abso-
lute paths, then the current direc-
tory must be set to be the directory
where the project is located before
calling the compiler. If this is not
done then DCC32 will be unable to
locate the units since it looks for
them relative to the current direc-
tory. It is therefore good practice
to always change directory to the
project directory before launching
the compiler.

Now that I’ve covered the funda-
mentals of using DCC32, we can
now create a batch file to perform
the build process. I’ve included
some example programs on the
disk that for the purpose of this
article represent our product,
along with the batch files I’ll be cre-
ating. Before running any of the
batch files make sure you’re in the
\Build subdirectory.

Listing 2 shows the code for the
first, most basic, build process. It
compiles both of the projects in
the product in non-verbose (quiet)
mode and outputs a message
depending on the success or
failure of the build. This is done
using the rudimentary flow control
available in batch files. If DCC32
fails to compile a project, it returns
an exit code of 1. This can then be
tested by looking at the ERRORLEVEL
variable and taking action depend-
ing on its value. In this case we use
GOTO to abort the build if any
compilation fails.

The next build process places all
executable files into a known direc-
tory, in this case the \BuildOutput
sub-directory, as shown in Listing
3. The output directory is specified
using the /E compiler option. It
would be very easy to make this a
parameter to the batch file by

Option IDE Equivalent (Delphi 3, in italics) / Comment

/A Environment Options|Library|Unit Aliases. Sets an alias for a unit,
eg /AWinTypes=Windows;WinProcs=Windows

/B Project|Build All. Build all units.

/CC Project Options|Linker|Generate console application.
Generates a console (non-GUI) application. Applicable to executables only.

/CG Project Options|Linker|Generate console app (unchecked). Generates a GUI application.

/D Project Options|Directories/Conditionals|Conditional defines.
Define conditional symbol(s). Used to define any conditional symbols the project
requires, eg /DMULTIUSER;SQL defines both the MULTIUSER and SQL symbols.

/E Project Options|Directories/Conditionals|Output directory.
Target directory to place executables and libraries. If a map file is generated then it is
also created in this directory, eg /E”C:\My Project\Latest Build”

/F Search|Find Error. Find location of run-time error.

/GS Project Options|Linker|Map File|Segments.
Create a map file with segment information only.

/GP Project Options|Linker|Map File|Publics. Create map file with publics information only.

/GD Project Options|Linker|Map File|Details. Create detailed (full) map file.

/H Project Options|Compiler|Show Hints. Output hint messages.

/I Project Options|Directories/Conditionals|Search Path.
Include file directories. Specifies the directory for the compiler to search for files included
with the $I directive if the files cannot be found in the normal search path,
eg /I”C:\My Project\Include Files”;”D:\Standard Include Files”

/J Project Options|Linker|Generate Object Files
Generates standard binary object (OBJ) files instead of DCUs. In a multiple language
development it is possible to link these object files into C programs.

/JP N/a. Generates binary object files that are compatible with C++.

/K Project Options|Linker|Image base. Sets the preferred load address of the compiled
image (normally only important for libraries).

/LE Environment Options|Library|DPL output directory.
Defines the directory to place compiled packages. Equivalent to /E for executables.

/LN Environment Options|Library|DCP output directory. Defines the directory to place
compiled package DCP files. Equivalent to /E for executables.

/LU N/a. Defines any run-time packages the application requires in addition to those defined
in the IDE’s project options dialog.

/M Project|Compile. Compiles units only if necessary, eg if the units are out of date.

/N Project Options|Directories/Conditionals|Unit output directory.
Defines the directory to place DCU files. Equivalent to /E for executables.

/O Project Options|Directories/Conditionals|Search Path. Object file directories. Specifies the
directory to search for object files linked in with the $L directive.

/P N/a. Instructs the compiler to look for 8.3 file names as well as long file names.

/Q N/a. Quiet compilation. If this option is not turned on then the compiler outputs a line
for every unit it compiles to the standard output.

/R Project Options|Directories/Conditionals|Search Path. Resource file directory. Specifies the
directory to search for resource files (.RES) included with the $R directive.

/TX Project Options|Application|Target file extension. Defines the extension of the target file,
eg /TXOCX would generate a file with a .OCX extension.

/U Environment Options|Library|Library Path.
Defines the directory to search for units that are not explicitly referenced in the project’s
source. This is a very important option that must reflect your normal library path.

/V Project Options|Linker|Include TD32 debug info. Instructs the compiler to generate Turbo
Debugger 5 compatible debugger inforation at the end of the executable file.

/W Project Options|Compiler|Show Hints. Output warning messages.

/Z Package Options|Description|Explicit rebuild. This instructs the compiler to prevent
implicit compilation at a later date. This applies to both packages and units.

changing /E..\BuildOutput to /E%1.
The output directory would then
be specified as the first parameter
to the batch file, for example
OutputBuild C:\Temp would place
all the executable files in the
C:\Temp directory.

The basic build process can now
be expanded to cope with more
demands. Typically more than one
type of build is required, say debug
and production builds. Debug
builds are given to QA for testing

and contain extra code to help
catch problems but are larger and
slower than production builds due
to the extra ‘defensive’ code. Pro-
duction builds are meant for the
customer and are tuned to be lean
and mean. Creating a batch file for
a debug build requires the use of
something not yet discussed:
compiler directives. A compiler
directive allows control over the

October 1998 The Delphi Magazine 33

@ECHO OFF
REM DebugBuild.bat
REM This compiles the product in a debug state and places the executables in a
named directory.
REM Build the first project.
CD "..\My Project 1"
DCC32 /B /H /W /Q /$D+ /$C+ /$O- /E..\BuildOutput MyProject1.dpr
IF ERRORLEVEL 1 GOTO FAILED
REM Now build the second project.
CD "..\My Project 2"
DCC32 /B /H /W /Q /$D+ /$C+ /$O- /E..\BuildOutput MyProject2.dpr
IF ERRORLEVEL 1 GOTO FAILED
ECHO My Product built OK
GOTO END
:FAILED
ECHO My Product failed to build
:END
CD ..\Build

Unit MyUnit;
{$DEBUGINFO ON}
{$ASSERTIONS ON}
{$OPTIMIZATION OFF}
...

➤ Listing 4

@ECHO OFF
REM OutputBuild.bat
REM This compiles the product using default compiler options
REM and places the executables in a named directory.
REM Build the first project.
CD "..\My Project 1"
DCC32 /Q /E..\BuildOutput MyProject1.dpr
IF ERRORLEVEL 1 GOTO FAILED
REM Now build the second project.
CD "..\My Project 2"
DCC32 /Q /E..\BuildOutput MyProject2.dpr
IF ERRORLEVEL 1 GOTO FAILED
ECHO My Product built OK
GOTO END
:FAILED
ECHO My Product failed to build
:END
CD ..\Build

@ECHO OFF
REM BasicBuild.bat
REM This just compiles the product in using default compiler options.
REM Build the first project.
CD "..\My Project 1"
DCC32 /Q MyProject1.dpr
IF ERRORLEVEL 1 GOTO FAILED
REM Now build the second project.
CD "..\My Project 2"
DCC32 /Q MyProject2.dpr
IF ERRORLEVEL 1 GOTO FAILED
ECHO My Product built OK
GOTO END
:FAILED
ECHO My Product failed to build
:END
CD ..\Build

features of the compiler itself, such
as whether or not to compile with
debug information. Directives can
be embedded into source code
directly: Listing 2 shows the use of
compiler directives in code to turn
debug information and assertions
on and optimisation off, a normal
debug build state. Directives can
either be short or long, eg $D+ or
$DEBUGINFO ON both direct the com-
piler to turn debug information on.
It is not ideal to embed these types
of directives into the source code
because they would have to be
changed every time a different type
of build (production or debug) was
performed. The directives in List-
ing 4 have IDE equivalents in the
Compiler page of the Project

Options dialog and so are normally
set from there.

It is possible to define directives
when calling the command line
compiler, using the /$ option. This
option is followed by the short
directive identifier (DCC32 does
not recognise long directive identi-
fiers). When specifying a directive
on the command line it must be
followed by + to turn it on or - to
turn it off: eg /$D+ turns debug
information on.

Listing 5 is a batch file that uses
some compiler directives to create
a debug build by turning debug
information and assertions on and
optimisation off. It also ensures
that all units are built for every pro-
ject. Although the /M (make) option
compiles quicker it’s important to
make sure that the build is

complete and that nothing missed
compilation. The make option suf-
fers from the same problem as the
IDE’s Compile option, in that units
are not recompiled if a compiler
option/directive has changed but
the code has remained the same.
The /H and /W options are included
to output hints and warnings that
may occur. If the build does pro-
duce hints or warnings then
strictly speaking it should be con-
sidered ‘broken’ since not all of the
projects compiled cleanly.

As an aside, it is good practice to
create a boolean constant that is
defined to be true if debug informa-
tion is on and false if it is not. This
constant can then be tested and
debug code only executed if the
constant is true. Listing 6 shows a
code snippet from the Debug unit
that defines a debug constant and
Listing 7 shows some code from
MyProject1\Main.pas that uses it. If
debug information is turned off
and optimisations turned on, the
debug code will be factored out by
the compiler since the constant
will be false and the compiler
knows it will never be executed.

Sundry Files
As well as Delphi projects, there
are other file types that may be
included in a build, as I mentioned
in the introduction. If you use
resource files then these will need
to be compiled as well, before any
projects that use them are com-
piled. Using the Borland resource
compiler (brcc32.exe) to compile a
resource script creates a binary
resource file with the extension of
.RES. This resource file is then
bound into a project by using the
$R directive in the project’s source
unit. MyProject1.dpr shows an
example of this: it uses a user
defined resource to bind the con-
tents of a default untitled file into
the executable. This resource is
then saved to a file when the pro-
gram is run (see Listing 8) and

➤ Below: Listing 3

➤ Listing 5

➤ Above: Listing 2

34 The Delphi Magazine Issue 38

const
// Define constant DebugOn to be true if debug info is on.
DebugOn = {$IFOPT D+} True {$ELSE} False {$ENDIF};
// Define constant AssertionOn to be true if assertions are on.
AssertionsOn = {$IFOPT C+} True {$ELSE} False {$ENDIF};

loaded into the editing window
when the user chooses to create a
new file (see Listing 9).

Listing 10 shows a batch file that
compiles the resource script
(ExtraData.rc) to generate the
binary resource file bound into the
MyProject1 executable. It also com-
piles the help file for the product
using the Help Workshop program,
HCW.EXE. This is supplied with
Delphi (in the Help\Tools subdi-
rectory) and is used for creating
and compiling help project files.
The command line switches used
compile the help project (/C) and
then exit (/E).

Conclusion
It’s a small step from the Debug-
Build batch file to a batch file that
performs a production build.
Normally this entails turning off all
the debug related features of the
compiler and making sure all
optimisations are turned on. If you
find batch files too limiting then
you can consider other alterna-
tives such as writing a Delphi appli-
cation that performs the build, or a
Windows batch language shell
program [We use BATSH.EXE, see
www.fmi.ch/groups/ThomasNyffen
egger/Group.html. Ed]. Or you
might consider using the emerging
Windows scripting technology,
Windows Scripting Host: it is
currently immature but shows
promise by allowing you to write
VBScript or JavaScript applets that
can be executed in either console
or GUI mode. This article should
have given you the grounding to
follow any of these options. How-
ever, if you decide to implement a
build process you will find that the
initial investment in developing it
will be paid back later with better
production code.

Dave Collie is a senior Delphi and
OO design consultant with
Informatica Consultancy &
Development, specialising in the
design and implementation of
large applications in a fully object
oriented environment. He can be
contacted via email at
dave@informatica.uk.com

➤ Below: Listing 9➤ Above: Listing 8

➤ Below: Listing 7➤ Above: Listing 6

@ECHO OFF
REM FullBuild.bat
REM This compiles the product in a debug state and places
REM the executables and sundry files into a named directory.
REM Build the first project.
CD "..\My Project 1"
BRCC32 ExtraData.rc
DCC32 /B /H /W /Q /$D+ /$C+ /$O- /E..\BuildOutput MyProject1.dpr
IF ERRORLEVEL 1 GOTO FAILED
REM Now build the second project.
CD "..\My Project 2"
DCC32 /B /H /W /Q /$D+ /$C+ /$O- /E..\BuildOutput MyProject2.dpr
IF ERRORLEVEL 1 GOTO FAILED
REM Make the help file.
CD ..\HELP
HCW /C /E myproduct.hpj
IF ERRORLEVEL 1 GOTO FAILED
COPY MyProduct.hlp ..\BuildOutput
ECHO My Product built OK
GOTO END
:FAILED
ECHO My Product failed to build
:END
CD ..\Build

➤ Listing 10

procedure TMainForm.FileSend(Sender: TObject);
var
MapiMessage: TMapiMessage;
MError: Cardinal;
MessageText: String;

begin
// This will be compiled out if debug information is turned off.
if DebugOn then begin
RichEdit1.Lines.Add('Message created on ' +
FormatDateTime('hh:mm:ss ddd mmm yyyy', Now));

end;
MessageText := RichEdit1.Lines.Text;
with MapiMessage do begin
ulReserved := 0;
lpszSubject := nil;
lpszNoteText := PChar(MessageText);
lpszMessageType := nil;
lpszDateReceived := nil;
lpszConversationID := nil;
flFlags := 0;
lpOriginator := nil;
nRecipCount := 0;
lpRecips := nil;
nFileCount := 0;
lpFiles := nil;

end;
MError := MapiSendMail(0, 0, MapiMessage, MAPI_DIALOG or MAPI_LOGON_UI
or MAPI_NEW_SESSION, 0);

if MError <> 0 then MessageDlg(rsSendError, mtError, [mbOK], 0);
end;

procedure TMainForm.FileNew(Sender: TObject);
begin
FFileName := rsUntitled;
RichEdit1.Lines.LoadFromFile(ExtractFilePath(Application.ExeName)+
'Untitled.txt');

RichEdit1.Modified := False;
end;

procedure TMainForm.FormCreate(Sender: TObject);
var ResourceData: TResourceStream;
begin
Application.OnHint := ShowHint;
// Extract default untitled file.
ResourceData :=
TResourceStream.Create(HInstance, 'DefaultUntitled', RT_RCDATA);

try
ResourceData.SaveToFile(ExtractFilePath(Application.ExeName)+'Untitled.txt');

finally
ResourceData.Free;

end;
FileNew (Self);

end;

	A Delphi Build Process
	Sundry Files
	Conclusion

